Subnanometric alkaline-earth oxide clusters for sustainable nitrate to ammonia photosynthesis

Author:

Li Jieyuan,Chen Ruimin,Wang Jielin,Zhou YingORCID,Yang Guidong,Dong FanORCID

Abstract

AbstractThe limitation of inert N2 molecules with their high dissociation energy has ignited research interests in probing other nitrogen-containing species for ammonia synthesis. Nitrate ions, as an alternative feedstock with high solubility and proton affinity, can be facilely dissociated for sustainable ammonia production. Here we report a nitrate to ammonia photosynthesis route (NO3RR) catalyzed by subnanometric alkaline-earth oxide clusters. The catalyst exhibits a high ammonia photosynthesis rate of 11.97 mol gmetal−1 h−1 (89.79 mmol gcat−1 h−1) with nearly 100% selectivity. A total ammonia yield of 0.78 mmol within 72 h is achieved, which exhibits a significant advantage in the area of photocatalytic NO3RR. The investigation of the molecular-level reaction mechanism reveals that the unique active interface between the subnanometric clusters and TiO2 substrate is beneficial for the nitrate activation and dissociation, contributing to efficient and selective nitrate reduction for ammonia production with low energy input. The practical application of NO3RR route in simulated wastewater is developed, which demonstrates great potential for its industrial application. These findings are of general knowledge for the functional development of clusters-based catalysts and could open up a path in the exploitation of advanced ammonia synthesis routes with low energy consumption and carbon emission.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3