Climate-controlled submarine landslides on the Antarctic continental margin
-
Published:2023-05-18
Issue:1
Volume:14
Page:
-
ISSN:2041-1723
-
Container-title:Nature Communications
-
language:en
-
Short-container-title:Nat Commun
Author:
Gales Jenny A.ORCID, McKay Robert M.ORCID, De Santis LauraORCID, Rebesco Michele, Laberg Jan SverreORCID, Shevenell Amelia EORCID, Harwood David, Leckie R. Mark, Kulhanek Denise K.ORCID, King Maxine, Patterson Molly, Lucchi Renata G.ORCID, Kim Sookwan, Kim Sunghan, Dodd Justin, Seidenstein Julia, Prunella Catherine, Ferrante Giulia M.ORCID, Ash Jeanine, Beny François, Browne Imogen M., Cortese Giuseppe, De Santis Laura, Dodd Justin P., Esper Oliver M., Gales Jenny A., Harwood David M., Ishino Saki, Keisling Benjamin A., Kim Sookwan, Kim Sunghan, Kulhanek Denise K., Laberg Jan Sverre, Leckie R. Mark, McKay Robert M., Müller Juliane, Patterson Molly O., Romans Brian W., Romero Oscar E., Sangiorgi Francesca, Seki Osamu, Shevenell Amelia E., Singh Shiv M., Cordeiro de Sousa Isabela M., Sugisaki Saiko T., van de Flierdt Tina, van Peer Tim E., Xiao Whenshen, Xiong Zhifang,
Abstract
AbstractAntarctica’s continental margins pose an unknown submarine landslide-generated tsunami risk to Southern Hemisphere populations and infrastructure. Understanding the factors driving slope failure is essential to assessing future geohazards. Here, we present a multidisciplinary study of a major submarine landslide complex along the eastern Ross Sea continental slope (Antarctica) that identifies preconditioning factors and failure mechanisms. Weak layers, identified beneath three submarine landslides, consist of distinct packages of interbedded Miocene- to Pliocene-age diatom oozes and glaciomarine diamicts. The observed lithological differences, which arise from glacial to interglacial variations in biological productivity, ice proximity, and ocean circulation, caused changes in sediment deposition that inherently preconditioned slope failure. These recurrent Antarctic submarine landslides were likely triggered by seismicity associated with glacioisostatic readjustment, leading to failure within the preconditioned weak layers. Ongoing climate warming and ice retreat may increase regional glacioisostatic seismicity, triggering Antarctic submarine landslides.
Funder
RCUK | Natural Environment Research Council EUROFLEETS
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Reference90 articles.
1. Korup, O. et al. Giant landslides, topography, and erosion. Earth Planet. Sci. Lett. 261, 578–589 (2007). 2. Tappin, D. R. Submarine mass failures as tsunami sources: their climate control. Philos. Trans. R. Soc. A 368, 2417–2434 (2010). 3. Kirby, J. T. et al. Validation and inter-comparison of models for landslide tsunami generation. Ocean Model. 170, 101943 (2022). 4. Piper, D. J. W., Cochonat, P. & Morrison, M. L. The sequence of events around the epicenter of the 1929 Grand Banks earthquake: initiation of the debris flows and turbidity current inferred from side scan sonar. Sedimentology 46, 79–97 (1999). 5. Fine, I. G., Rabinovich, A. B., Bornhold, B. D., Thomson, R. E. & Kulikov, E. A. The Grand Banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modelling. Mar. Geol. 215, 45–57 (2005).
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|