Light absorption enhancement of black carbon in a pyrocumulonimbus cloud

Author:

Beeler PaytonORCID,Kumar Joshin,Schwarz Joshua P.,Adachi KoujiORCID,Fierce LauraORCID,Perring Anne E.,Katich J. M.,Chakrabarty Rajan K.ORCID

Abstract

AbstractPyrocumulonimbus (pyroCb) firestorm systems have been shown to inject significant amounts of black carbon (BC) to the stratosphere with a residence time of several months. Injected BC warms the local stratospheric air, consequently perturbing transport and hence spatial distributions of ozone and water vapor. A distinguishing feature of BC-containing particles residing within pyroCb smoke is their thick surface coatings made of condensed organic matter. When coated with non-refractory materials, BC’s absorption is enhanced, yet the absorption enhancement factor (Eabs) for pyroCb BC is not well constrained. Here, we perform particle-scale measurements of BC mass, morphology, and coating thickness from inside a pyroCb cloud and quantify Eabs using an established particle-resolved BC optics model. We find that the population-averaged Eabs for BC asymptotes to 2.0 with increasing coating thickness. This value denotes the upper limit of Eabs for thickly coated BC in the atmosphere. Our results provide observationally constrained parameterizations of BC absorption for improved radiative transfer calculations of pyroCb events.

Funder

National Aeronautics and Space Administration

United States Department of Commerce | National Oceanic and Atmospheric Administration

National Science Foundation

U.S. Department of Energy

Simons Foundation's Mathematics and Physical Sciences division.

DOE | LDRD | Pacific Northwest National Laboratory

Linus Pauling Distinguished Postdoctoral Fellowship Program.

U.S. Department of Energy (DOE) Atmospheric System Research (ASR) program via the Integrated Cloud, Land-Surface, and Aerosol System Study (ICLASS) Science Focus Area.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3