Abstract
AbstractThe advent of moiré materials has galvanized interest in the nature of charge carriers in topological bands. In contrast to conventional materials with electron-like charge carriers, topological bands allow for more exotic possibilities where charge is carried by nontrivial topological textures, such as skyrmions. However, the real-space description of skyrmions is ill-suited to address the limit of small skyrmions and to account for momentum-space band features. Here, we develop a momentum-space approach to study the formation of the smallest skyrmions – spin polarons, formed as bound states of an electron and a spin flip – in topological ferromagnets. We show that, quite generally, there is an attraction between an electron and a spin flip that is purely topological in origin, promoting the formation of spin polarons. Applying our results to twisted bilayer graphene, we identify a range of parameters where spin polarons are formed and discuss their possible experimental signatures.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献