Relatively stable pressure effects and time-increasing thermal contraction control Heber geothermal field deformation

Author:

Jiang GuoyanORCID,Barbour Andrew J.ORCID,Skoumal Robert J.ORCID,Materna Kathryn,Taron Joshua,Crandall-Bear Aren

Abstract

AbstractDue to geological complexities and observational gaps, it is challenging to identify the governing physical processes of geothermal field deformation including ground subsidence and earthquakes. In the west and east regions of the Heber Geothermal Field (HGF), decade-long subsidence was occurring despite injection of heat-depleted brines, along with transient reversals between uplift and subsidence. These observed phenomena contradict current knowledge that injection leads to surface uplift. Here we show that high-yield production wells at the HGF center siphon fluid from surrounding regions, which can cause subsidence at low-rate injection locations. Moreover, the thermal contraction effect by cooling increases with time and eventually overwhelms the pressure effects of pressure fluctuation and poroelastic responses, which keep relatively stable during geothermal operations. The observed subsidence anomalies result from the siphoning effect and thermal contraction. We further demonstrate that thermal contraction dominates long-term trends of surface displacement and seismicity growth, while pressure effects drive near-instantaneous changes.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3