Super-broadband on-chip continuous spectral translation unlocking coherent optical communications beyond conventional telecom bands

Author:

Kong DemingORCID,Liu Yong,Ren Zhengqi,Jung Yongmin,Kim ChanjuORCID,Chen Yong,Wheeler Natalie V.,Petrovich Marco N.,Pu MinhaoORCID,Yvind KrestenORCID,Galili Michael,Oxenløwe Leif K.ORCID,Richardson David J.ORCID,Hu HaoORCID

Abstract

AbstractToday’s optical communication systems are fast approaching their capacity limits in the conventional telecom bands. Opening up new wavelength bands is becoming an appealing solution to the capacity crunch. However, this ordinarily requires the development of optical transceivers for any new wavelength band, which is time-consuming and expensive. Here, we present an on-chip continuous spectral translation method that leverages existing commercial transceivers to unlock the vast and currently unused potential new wavelength bands. The spectral translators are continuous-wave laser pumped aluminum gallium arsenide on insulator (AlGaAsOI) nanowaveguides that provide a continuous conversion bandwidth over an octave. We demonstrate coherent transmission in the 2-μm band using well-developed conventional C-band transmitters and coherent receivers, as an example of the potential of the spectral translators that could also unlock communications at other wavelength bands. We demonstrate 318.25-Gbit s−1 Nyquist wavelength-division multiplexed coherent transmission over a 1.15-km hollow-core fibre using this approach. Our demonstration paves the way for transmitting, detecting, and processing signals at wavelength bands beyond the capability of today’s devices.

Funder

Royal Society

Danmarks Grundforskningsfond

RCUK | Engineering and Physical Sciences Research Council

Villum Fonden

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3