Organic donor-acceptor heterojunctions for high performance circularly polarized light detection

Author:

Zhu Danlei,Jiang Wei,Ma Zetong,Feng Jiajing,Zhan Xiuqin,Lu Cheng,Liu Jie,Liu Jie,Hu Yuanyuan,Wang DongORCID,Zhao Yong ShengORCID,Wang JianpuORCID,Wang Zhaohui,Jiang LangORCID

Abstract

AbstractDevelopment of highly efficient and stable lateral organic circularly polarized light photodetector is a fundamental prerequisite for realization of circularly polarized light integrated applications. However, chiral semiconductors with helical structure are usually found with intrinsically low field-effect mobilities, which becomes a bottleneck for high-performance and multi-wavelength circularly polarized light detection. To address this problem, here we demonstrate a novel strategy to fabricate multi-wavelength circularly polarized light photodetector based on the donor-acceptor heterojunction, where efficient exciton separation enables chiral acceptor layer to provide differentiated concentration of holes to the channel of organic field-effect transistors. Benefitting from the low defect density at the semiconductor/dielectric interface, the photodetectors exhibit excellent stability, enabling current roll-off of about 3–4% over 500 cycles. The photocurrent dissymmetry value and responsivity for circularly polarized light photodetector in air are 0.24 and 0.28 A W−1, respectively. We further demonstrate circularly polarized light communication based on a real-time circularly polarized light detector by decoding the light signal. As the proof-of-concept, the results hold the promise of large-scale circularly polarized light integrated photonic applications.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology of the People's Republic of China

Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3