Abstract
AbstractDue to epistasis, the same mutation can have drastically different phenotypic consequences in different individuals. This phenomenon is pertinent to precision medicine as well as antimicrobial drug development, but its general characteristics are largely unknown. We approach this question by genome-wide assessment of gene essentiality polymorphism in 16 Saccharomyces cerevisiae strains using transposon insertional mutagenesis. Essentiality polymorphism is observed for 9.8% of genes, most of which have had repeated essentiality switches in evolution. Genes exhibiting essentiality polymorphism lean toward having intermediate numbers of genetic and protein interactions. Gene essentiality changes tend to occur concordantly among components of the same protein complex or metabolic pathway and among a group of over 100 mitochondrial proteins, revealing molecular machines or functional modules as units of gene essentiality variation. Most essential genes tolerate transposon insertions consistently among strains in one or more coding segments, delineating nonessential regions within essential genes.
Funder
U.S. Department of Health & Human Services | National Institutes of Health
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献