Optimization of fluorinated phenyl azides as universal photocrosslinkers for semiconducting polymers

Author:

Tan Zhao-Siu,Jamal Zaini,Teo Desmond W. Y.,Ko Hor-Cheng,Seah Zong-Long,Phua Hao-Yu,Ho Peter K. H.ORCID,Png Rui-Qi,Chua Lay-LayORCID

Abstract

AbstractFluorinated phenyl azides (FPA) enable photo-structuring of π-conjugated polymer films for electronic device applications. Despite their potential, FPAs have faced limitations regarding their crosslinking efficiency, and more importantly, their impact on critical semiconductor properties, such as charge-carrier mobility. Here, we report that azide photolysis and photocrosslinking can achieve unity quantum efficiencies for specific FPAs. This suggests preferential nitrene insertion into unactivated C‒H bonds over benzazirine and ketenimine reactions, which we attribute to rapid interconversion between the initially formed hot states. Furthermore, we establish a structure‒activity relationship for carrier mobility quenching. The binding affinity of FPA crosslinker to polymer π-stacks governs its propensity for mobility quenching in both PM6 and PBDB-T used as model conjugated polymers. This binding affinity can be suppressed by FPA ring substitution, but varies in a non-trivial way with π-stack order. Utilizing the optimal FPA, photocrosslinking enables the fabrication of morphology-stabilized, acceptor-infiltrated donor polymer networks (that is, PBDB-T: ITIC and PM6: Y6) for solar cells. Our findings demonstrate the exceptional potential of the FPA photochemistry and offer a promising approach to address the challenges of modelling realistic molecular interactions in complex polymer morphologies, moving beyond the limitations of Flory‒Huggins mean field theory.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3