Abstract
AbstractWhen the atomic layers in a non-centrosymmetric van der Waals structure slide against each other, the interfacial charge transfer results in a reversal of the structure’s spontaneous polarization. This phenomenon is known as sliding ferroelectricity and it is markedly different from conventional ferroelectric switching mechanisms relying on ion displacement. Here, we present layer dependence as a new dimension to control sliding ferroelectricity. By fabricating 3 R MoS2 of various thicknesses into dual-gate field-effect transistors, we obtain anomalous intermediate polarization states in multilayer (more than bilayer) 3 R MoS2. Using results from ab initio density functional theory calculations, we propose a generalized model to describe the ferroelectric switching process in multilayer 3 R MoS2 and to explain the formation of these intermediate polarization states. This work reveals the critical roles layer number and interlayer dipole coupling play in sliding ferroelectricity and presents a new strategy for the design of novel sliding ferroelectric devices.
Funder
National Research Foundation Singapore
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
84 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献