Untrackable distal ejecta on planetary surfaces

Author:

Xu RuiORCID,Xiao ZhiyongORCID,Luo FangluORCID,Wang YichenORCID,Cui Jun

Abstract

AbstractImpact ejecta are important references to establish regional and global stratigraphy of planetary bodies. Canonical views advocate radial distributions of distal ejecta with respect to the source crater, and their trajectories are significantly deflected on fast-rotating bodies. The Hokusai crater on Mercury formed a peculiar ray that features a hyperbola shape, and the sharp swerve of orientation was interpreted as a sign of a faster planetary rotation in the near past. Here, we show that this ray was not caused by a hypothesized larger Coriolis force, but due to abruptly-steepened ejection angles. Heterogeneous shock impedances of pre-impact impactor and/or target, such as topographic undulations, affect local propagation paths of shock and rarefaction waves, causing sudden changes of ejection angles. Distal ejecta with non-radial distributions are an inherent product of planetary impacts, and their unobvious provenances could mislead stratigraphic interpretations and hamper age estimations based on spatial densities of impact craters.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3