Abstract
AbstractAnderson localization is a multiple-scattering phenomenon of linear waves propagating within a disordered medium. Discovered in the late 50s for electrons, it has since been observed experimentally with cold atoms and with classical waves (optics, microwaves, and acoustics), but whether wave localization is enhanced or weakened for nonlinear waves is a long-standing debate. Here, we show that the nonlinearity strengthens the localization of surface-gravity waves propagating in a canal with a random bottom. We also show experimentally how the localization length depends on the nonlinearity, which has never been reported previously with any type of wave. To do so, we use a full space-and-time-resolved wavefield measurement as well as numerical simulations. The effects of the disorder level and the system’s finite size on localization are also reported. We also highlight the first experimental evidence of the macroscopic analog of Bloch’s dispersion relation of linear hydrodynamic surface waves over periodic bathymetry.
Funder
Simons Foundation
Agence Nationale de la Recherche
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献