Abstract
AbstractThe energy storage performance of lithium-ion batteries (LIBs) depends on the electrode capacity and electrode/cell design parameters, which have previously been addressed separately, leading to a failure in practical implementation. Here, we show how conformal graphene (Gr) coating on Ni-rich oxides enables the fabrication of highly packed cathodes containing a high content of active material (~99 wt%) without conventional conducting agents. With 99 wt% LiNi0.8Co0.15Al0.05O2 (NCA) and electrode density of ~4.3 g cm-3, the Gr-coated NCA cathode delivers a high areal capacity, ~5.4 mAh cm−2 (~38% increase) and high volumetric capacity, ~863 mAh cm-3 (~34% increase) at a current rate of 0.2 C (~1.1 mA cm-2); this surpasses the bare electrode approaching a commercial level of electrode setting (96 wt% NCA; ~3.3 g cm-3). Our findings offer a combinatorial avenue for materials engineering and electrode design toward advanced LIB cathodes.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
70 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献