Abstract
AbstractMetal nanoclusters (NCs) have been developed as a new class of luminescent nanomaterials with potential applications in various fields. However, for most of the metal NCs reported so far, the relatively low photoluminescence quantum yield (QY) in aqueous solution hinders their applications. Here, we describe the utilization of bis-Schiff base linkages to restrict intramolecular motion of surface motifs at the single-cluster level. Based on Au22(SG)18 (SG: glutathione) NCs, an intracluster cross-linking system was constructed with 2,6-pyridinedicarboxaldehyde (PDA), and water-soluble gold NCs with luminescence QY up to 48% were obtained. The proposed approach for achieving high emission efficiency can be extended to other luminescent gold NCs with core-shell structure. Our results also show that the content of surface-bound Au(I)-SG complexes has a significant impact on the PDA-induced luminescence enhancement, and a high ratio of Au(I)-SG will be beneficial to increasing the photoluminescence intensity of gold NCs.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献