Abstract
AbstractExploring new near-room-temperature thermoelectric materials is significant for replacing current high-cost Bi2Te3. This study highlights the potential of Ag2Se for wearable thermoelectric electronics, addressing the trade-off between performance and flexibility. A record-high ZT of 1.27 at 363 K is achieved in Ag2Se-based thin films with 3.2 at.% Te doping on Se sites, realized by a new concept of doping-induced orientation engineering. We reveal that Te-doping enhances film uniformity and (00l)-orientation and in turn carrier mobility by reducing the (00l) formation energy, confirmed by solid computational and experimental evidence. The doping simultaneously widens the bandgap, resulting in improved Seebeck coefficients and high power factors, and introduces TeSe point defects to effectively reduce the lattice thermal conductivity. A protective organic-polymer-based composite layer enhances film flexibility, and a rationally designed flexible thermoelectric device achieves an output power density of 1.5 mW cm−2 for wearable power generation under a 20 K temperature difference.
Publisher
Springer Science and Business Media LLC
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献