Secure human action recognition by encrypted neural network inference

Author:

Kim MiranORCID,Jiang XiaoqianORCID,Lauter Kristin,Ismayilzada ElkhanORCID,Shams Shayan

Abstract

AbstractAdvanced computer vision technology can provide near real-time home monitoring to support “aging in place” by detecting falls and symptoms related to seizures and stroke. Affordable webcams, together with cloud computing services (to run machine learning algorithms), can potentially bring significant social benefits. However, it has not been deployed in practice because of privacy concerns. In this paper, we propose a strategy that uses homomorphic encryption to resolve this dilemma, which guarantees information confidentiality while retaining action detection. Our protocol for secure inference can distinguish falls from activities of daily living with 86.21% sensitivity and 99.14% specificity, with an average inference latency of 1.2 seconds and 2.4 seconds on real-world test datasets using small and large neural nets, respectively. We show that our method enables a 613x speedup over the latency-optimized LoLa and achieves an average of 3.1x throughput increase in secure inference compared to the throughput-optimized nGraph-HE2.

Funder

National Research Foundation of Korea

Foundation for the National Institutes of Health

University of Texas Health Science Center at Houston

Christopher Sarofim Family Professorship, UT Stars award, UTHealth startup

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Human posture estimation algorithm based on keypoint error weighted loss function;International Conference on Image, Signal Processing, and Pattern Recognition (ISPP 2024);2024-06-13

2. Encrypted Data Caching and Learning Framework for Robust Federated Learning-Based Mobile Edge Computing;IEEE/ACM Transactions on Networking;2024-06

3. Lighter and faster: A multi-scale adaptive graph convolutional network for skeleton-based action recognition;Engineering Applications of Artificial Intelligence;2024-06

4. Deep learning approaches for seizure video analysis: A review;Epilepsy & Behavior;2024-05

5. Towards Practical Transciphering for FHE with Setup Independent of the Plaintext Space;IACR Communications in Cryptology;2024-04-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3