Abstract
AbstractThe complexity of biological systems is encoded in gene regulatory networks. Unravelling this intricate web is a fundamental step in understanding the mechanisms of life and eventually developing efficient therapies to treat and cure diseases. The major obstacle in inferring gene regulatory networks is the lack of data. While time series data are nowadays widely available, they are typically noisy, with low sampling frequency and overall small number of samples. This paper develops a method called BINGO to specifically deal with these issues. Benchmarked with both real and simulated time-series data covering many different gene regulatory networks, BINGO clearly and consistently outperforms state-of-the-art methods. The novelty of BINGO lies in a nonparametric approach featuring statistical sampling of continuous gene expression profiles. BINGO’s superior performance and ease of use, even by non-specialists, make gene regulatory network inference available to any researcher, helping to decipher the complex mechanisms of life.
Funder
Fonds National de la Recherche Luxembourg
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Reference55 articles.
1. Penfold, C. A. & Wild, D. L. How to infer gene networks from expression profiles. Interface Focus 1, 857–870 (2011).
2. Marbach, D. et al. Revealing strengths and weaknesses of methods for gene network inference. Proc. Natl Acad. Sci. USA 107, 6286–6291 (2010).
3. Huynh-Thu, V. A. & Geurts, P. dynGENIE3: dynamical GENIE3 for the inference of gene networks from time series expression data. Sci. Rep. 8, 3384 (2018).
4. Casadiego, J., Nitzan, M., Hallerberg, S. & Timme, M. Model-free inference of direct network interactions from nonlinear collective dynamics. Nat. Commun. 8, 2192 (2017).
5. Rubiolo, M., Milone, D. & Stegmayer, G. Extreme learning machines for reverse engineering of gene regulatory networks from expression time series. Bioinformatics 34, 1253–1260 (2017).
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献