The influence of recent and future climate change on spring Arctic cyclones

Author:

Parker Chelsea L.ORCID,Mooney Priscilla A.,Webster Melinda A.ORCID,Boisvert Linette N.

Abstract

AbstractIn recent decades, the Arctic has experienced rapid atmospheric warming and sea ice loss, with an ice-free Arctic projected by the end of this century. Cyclones are synoptic weather events that transport heat and moisture into the Arctic, and have complex impacts on sea ice, and the local and global climate. However, the effect of a changing climate on Arctic cyclone behavior remains poorly understood. This study uses high resolution (4 km), regional modeling techniques and downscaled global climate reconstructions and projections to examine how recent and future climatic changes alter cyclone behavior. Results suggest that recent climate change has not yet had an appreciable effect on Arctic cyclone characteristics. However, future sea ice loss and increasing surface temperatures drive large increases in the near-surface temperature gradient, sensible and latent heat fluxes, and convection during cyclones. The future climate can alter cyclone trajectories and increase and prolong intensity with greatly augmented wind speeds, temperatures, and precipitation. Such changes in cyclone characteristics could exacerbate sea ice loss and Arctic warming through positive feedbacks. The increasing extreme nature of these weather events has implications for local ecosystems, communities, and socio-economic activities.

Funder

National Aeronautics and Space Administration

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3