Abstract
AbstractSingle-pixel cameras have recently emerged as promising alternatives to multi-pixel sensors due to reduced costs and superior durability, which are particularly attractive for mid-infrared (MIR) imaging pertinent to applications including industry inspection and biomedical diagnosis. To date, MIR single-pixel photon-sparse imaging has yet been realized, which urgently calls for high-sensitivity optical detectors and high-fidelity spatial modulators. Here, we demonstrate a MIR single-photon computational imaging with a single-element silicon detector. The underlying methodology relies on nonlinear structured detection, where encoded time-varying pump patterns are optically imprinted onto a MIR object image through sum-frequency generation. Simultaneously, the MIR radiation is spectrally translated into the visible region, thus permitting infrared single-photon upconversion detection. Then, the use of advanced algorithms of compressed sensing and deep learning allows us to reconstruct MIR images under sub-Nyquist sampling and photon-starving illumination. The presented paradigm of single-pixel upconversion imaging is featured with single-pixel simplicity, single-photon sensitivity, and room-temperature operation, which would establish a new path for sensitive imaging at longer infrared wavelengths or terahertz frequencies, where high-sensitivity photon counters and high-fidelity spatial modulators are typically hard to access.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献