Abstract
AbstractInhibitory neurons in the midbrain spatial attention network, called isthmi pars magnocellularis (Imc), control stimulus selection by the sensorimotor and attentional hub, the optic tectum (OT). Here, we investigate in the barn owl how classical as well as extraclassical (global) inhibitory surrounds of Imc receptive fields (RFs), fundamental units of Imc computational function, are constructed. We find that focal, reversible blockade of GABAergic input onto Imc neurons disconnects their extraclassical inhibitory surrounds, but leaves intact their classical inhibitory surrounds. Subsequently, with paired recordings and iontophoresis, first at spatially aligned site-pairs in Imc and OT, and then, at mutually distant site-pairs within Imc, we demonstrate that classical inhibitory surrounds of Imc RFs are inherited from OT, but their extraclassical inhibitory surrounds are constructed within Imc. These results reveal key design principles of the midbrain spatial attention circuit and highlight the critical importance of competitive interactions within Imc for its operation.
Funder
U.S. Department of Health & Human Services | National Institutes of Health
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Reference44 articles.
1. Egeth, H. E. & Yantis, S. Visual attention: control, representation, and time course. Annu. Rev. Psychol. 48, 269–297 (1997).
2. Fecteau, J. & Munoz, D. Salience, relevance, and firing: a priority map for target selection. Trends Cogn. Sci. 10, 382–390 (2006).
3. Knudsen, E. I. Fundamental components of attention. Annu. Rev. Neurosci. 30, 57–78 (2007).
4. Koch, C. & Ullman, S. Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Neurobiol. 4, 219–227 (1985).
5. Knudsen, E. I. Control from below: the role of a midbrain network in spatial attention. Eur. J. Neurosci. 33, 1961–1972 (2011).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献