National genomic surveillance integrating standardized quantitative susceptibility testing clarifies antimicrobial resistance in Enterobacterales

Author:

Kayama ShizuoORCID,Yahara KojiORCID,Sugawara YoORCID,Kawakami Sayoko,Kondo Kohei,Zuo Hui,Kutsuno Shoko,Kitamura Norikazu,Hirabayashi Aki,Kajihara Toshiki,Kurosu Hitomi,Yu Liansheng,Suzuki Masato,Hisatsune Junzo,Sugai Motoyuki

Abstract

AbstractAntimicrobial resistance is a global health concern; Enterobacterales resistant to third-generation cephalosporins (3GCs) and carbapenems are of the highest priority. Here, we conducted genome sequencing and standardized quantitative antimicrobial susceptibility testing of 4,195 isolates of Escherichia coli and Klebsiella pneumoniae resistant to 3GCs and Enterobacterales with reduced meropenem susceptibility collected across Japan. Our analyses provided a complete classification of 3GC resistance mechanisms. Analyses with complete reference plasmids revealed that among the blaCTX-M extended-spectrum β-lactamase genes, blaCTX-M-8 was typically encoded in highly similar plasmids. The two major AmpC β-lactamase genes were blaCMY-2 and blaDHA-1. Long-read sequencing of representative plasmids revealed that approximately 60% and 40% of blaCMY-2 and blaDHA-1 were encoded by such plasmids, respectively. Our analyses identified strains positive for carbapenemase genes but phenotypically susceptible to carbapenems and undetectable by standard antimicrobial susceptibility testing. Systematic long-read sequencing enabled reconstruction of 183 complete plasmid sequences encoding three major carbapenemase genes and elucidation of their geographical distribution stratified by replicon types and species carrying the plasmids and potential plasmid transfer events. Overall, we provide a blueprint for a national genomic surveillance study that integrates standardized quantitative antimicrobial susceptibility testing and characterizes resistance determinants.

Funder

Japan Agency for Medical Research and Development

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3