Resolving the puzzle of single-atom silver dispersion on nanosized γ-Al2O3 surface for high catalytic performance

Author:

Wang FeiORCID,Ma Jinzhu,Xin Shaohui,Wang QiangORCID,Xu Jun,Zhang Changbin,He Hong,Cheng Zeng XiaoORCID

Abstract

AbstractAg/γ-Al2O3 is widely used for catalyzing various reactions, and its performance depends on the valence state, morphology and dispersion of Ag species. However, detailed anchoring mechanism of Ag species on γ-Al2O3 remains largely unknown. Herein, we reveal that the terminal hydroxyls on γ-Al2O3 are responsible for anchoring Ag species. The abundant terminal hydroxyls existed on nanosized γ-Al2O3 can lead to single-atom silver dispersion, thereby resulting in markedly enhanced performance than the Ag cluster on microsized γ-Al2O3. Density-functional-theory calculations confirm that Ag atom is mainly anchored by the terminal hydroxyls on (100) surface, forming a staple-like local structure with each Ag atom bonded with two or three terminal hydroxyls. Our finding resolves the puzzle on why the single-atom silver dispersion can be spontaneously achieved only on nanosized γ-Al2O3, but not on microsized γ-Al2O3. The obtained insight into the Ag species dispersion will benefit future design of more efficient supported Ag catalysts.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3