Abstract
Abstract
Diverse methods have been developed to tailor the number of metal atoms in metal nanoclusters, but control of surface ligand number at a given cluster size is rare. Here we demonstrate that reversible addition and elimination of a single surface thiolate ligand (-SR) on gold nanoclusters can be realized, opening the door to precision ligand engineering on atomically precise nanoclusters. We find that oxidative etching of [Au25SR18]− nanoclusters adds an excess thiolate ligand and generates a new species, [Au25SR19]0. The addition reaction can be reversed by CO reduction of [Au25SR19]0, leading back to [Au25SR18]− and eliminating precisely one surface ligand. Intriguingly, we show that the ligand shell of Au25 nanoclusters becomes more fragile and rigid after ligand addition. This reversible addition/elimination reaction of a single surface ligand on gold nanoclusters shows potential to precisely control the number of surface ligands and to explore new ligand space at each nuclearity.
Funder
Ministry of Education - Singapore
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
78 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献