Abstract
AbstractActive electronic states in transition metal dichalcogenides are able to prompt hydrogen evolution by improving hydrogen absorption. However, the development of thermodynamically stable hexagonal 2H-MoS2 as hydrogen evolution catalyst is likely to be shadowed by its limited active electronic state. Herein, the charge self-regulation effect mediated by tuning Mo−Mo bonds and S vacancies is revealed in metastable trigonal MoS2 (1T'''-MoS2) structure, which is favarable for the generation of active electronic states to boost the hydrogen evolution reaction activity. The optimal 1T'''-MoS2 sample exhibits a low overpotential of 158 mV at 10 mA cm−2 and a Tafel slope of 74.5 mV dec−1 in acidic conditions, which are far exceeding the 2H-MoS2 counterpart (369 mV and 137 mV dec−1). Theoretical modeling indicates that the boosted performance is attributed to the formation of massive active electronic states induced by the charge self-regulation effect of Mo−Mo bonds in defective 1T'''-MoS2 with rich S vacancies.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
96 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献