Abstract
AbstractOrganic-inorganic hybrid perovskites are promising materials for the next generation photovoltaics and optoelectronics; however, their practical application has been hindered by poor structural stability mainly caused by ion migration and external stimuli. Understanding the mechanism(s) of ion migration and structure decomposition is thus critical. Here we observe the sequence of structural changes at the atomic level that precede structural decomposition in the technologically important Cs1-xFAxPbI3 using ultralow dose transmission electron microscopy. We find that these changes differ, depending upon the A-site composition. Initially, there is a random loss of FA+, complemented by the loss of I-. The remaining FA+ and I- ions then migrate, unit cell by unit cell, into an ordered and more stable phase with a √2 x √2 superstructure. Further ion loss is accompanied by A-site dependent octahedral tilt modes and associated tetragonal phases with different stabilities. These observations of the loss of FA+/I- ion pairs, ion migration, octahedral tilt modes, and the role of the A-cation, provide insights into the atomic-scale structural mechanisms that drive and block ion loss and ion migration, opening pathways to inhibit ion loss, migration and improve structural stability.
Funder
Department of Education and Training | Australian Research Council
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献