Abstract
AbstractTuning electrical, optical, and thermal material properties is central for engineering and understanding solid-state systems. In this scenario, atomically thin materials are appealing because of their sensitivity to electric and magnetic gating, as well as to interlayer hybridization. Here, we introduce a radically different approach to material engineering relying on the image interaction experienced by electrons in a two-dimensional material when placed in proximity of an electrically neutral structure. We theoretically show that electrons in a semiconductor atomic layer acquire a quantum phase resulting from the image potential induced by the presence of a neighboring periodic array of conducting ribbons, which in turn modifies the optical, electrical, and thermal properties of the monolayer, giving rise to additional interband optical absorption, plasmon hybridization, and metal-insulator transitions. Beyond its fundamental interest, material engineering based on the image interaction represents a disruptive approach to tailor the properties of atomic layers for application in nanodevices.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献