High-fidelity photonic quantum logic gate based on near-optimal Rydberg single-photon source

Author:

Shi Shuai,Xu Biao,Zhang Kuan,Ye Gen-ShengORCID,Xiang De-Sheng,Liu Yubao,Wang Jingzhi,Su DaiqinORCID,Li LinORCID

Abstract

AbstractCompared to other types of qubits, photon is one of a kind due to its unparalleled advantages in long-distance quantum information exchange. Therefore, photon is a natural candidate for building a large-scale, modular optical quantum computer operating at room temperature. However, low-fidelity two-photon quantum logic gates and their probabilistic nature result in a large resource overhead for fault tolerant quantum computation. While the probabilistic problem can, in principle, be solved by employing multiplexing and error correction, the fidelity of linear-optical quantum logic gate is limited by the imperfections of single photons. Here, we report the demonstration of a linear-optical quantum logic gate with truth table fidelity of 99.84(3)% and entangling gate fidelity of 99.69(4)% post-selected upon the detection of photons. The achieved high gate fidelities are made possible by our near-optimal Rydberg single-photon source. Our work paves the way for scalable photonic quantum applications based on near-optimal single-photon qubits and photon-photon gates.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3