Abstract
AbstractDirect conversion from terahertz photon to charge current is a key phenomenon for terahertz photonics. Quantum geometrical description of optical processes in crystalline solids predicts existence of field-unbiased dc photocurrent arising from terahertz-light generation of magnetic excitations in multiferroics, potentially leading to fast and energy-efficient terahertz devices. Here, we demonstrate the dc charge current generation from terahertz magnetic excitations in multiferroic perovskite manganites with spin-driven ferroelectricity, while keeping an insulating state with no free carrier. It is also revealed that electromagnon, which ranges sub-terahertz to 2 THz, as well as antiferromagnetic resonance shows the giant conversion efficiency. Polar asymmetry induced by the cycloidal spin order gives rise to this terahertz-photon-induced dc photocurrent, and no external magnetic and electric bias field are required for this conversion process. The observed phenomena are beyond the conventional photovoltaics in semi-classical regime and demonstrate the essential role of quantum geometrical aspect in low-energy optical processes. Our finding establishes a paradigm of terahertz photovoltaic phenomena, paving a way for terahertz photonic devices and energy harvesting.
Funder
MEXT | Japan Society for the Promotion of Science
MEXT | Japan Science and Technology Agency
MEXT | JST | Core Research for Evolutional Science and Technology
Publisher
Springer Science and Business Media LLC
Reference42 articles.
1. Nayak, P. K., Mahesh, S., Snaith, H. J. & Cahen, D. Photovoltaic solar cell technologies: analysing the state of the art. Nat. Rev. Mater. 4, 269–285 (2019).
2. Khomskii, D. I. Basic Aspects of the Quantum Theory of Solids: Order And Elementary Excitations (Cambridge Univ. Press, 2012).
3. Young, S. M. & Rappe, A. M. First principles calculation of the shift current photovoltaic effect in ferroelectrics. Phys. Rev. Lett. 109, 116601 (2012).
4. Morimoto, T. & Nagaosa, N. Topological nature of nonlinear optical effects in solids. Sci. Adv. 2, e1501524 (2016).
5. Tokura, Y. & Nagaosa, N. Nonreciprocal responses from noncentrosymmetric quantum materials. Nat. Commun. 9, 3740 (2018).