Abstract
AbstractStructural bioinformatics suffers from the lack of interfaces connecting biological structures and machine learning methods, making the application of modern neural network architectures impractical. This negatively affects the development of structure-based bioinformatics methods, causing a bottleneck in biological research. Here we present PyUUL (https://pyuul.readthedocs.io/), a library to translate biological structures into 3D tensors, allowing an out-of-the-box application of state-of-the-art deep learning algorithms. The library converts biological macromolecules to data structures typical of computer vision, such as voxels and point clouds, for which extensive machine learning research has been performed. Moreover, PyUUL allows an out-of-the box GPU and sparse calculation. Finally, we demonstrate how PyUUL can be used by researchers to address some typical bioinformatics problems, such as structure recognition and docking.
Funder
Katholieke Universiteit Leuven | Universitaire Ziekenhuizen Leuven, KU Leuven
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献