Defective metabolic programming impairs early neuronal morphogenesis in neural cultures and an organoid model of Leigh syndrome

Author:

Inak Gizem,Rybak-Wolf Agnieszka,Lisowski Pawel,Pentimalli Tancredi M.,Jüttner René,Glažar Petar,Uppal Karan,Bottani EmanuelaORCID,Brunetti DarioORCID,Secker ChristopherORCID,Zink AnnikaORCID,Meierhofer DavidORCID,Henke Marie-ThérèseORCID,Dey MonishitaORCID,Ciptasari UmmiORCID,Mlody Barbara,Hahn Tobias,Berruezo-Llacuna Maria,Karaiskos Nikos,Di Virgilio MichelaORCID,Mayr Johannes A.ORCID,Wortmann Saskia B.,Priller JosefORCID,Gotthardt MichaelORCID,Jones Dean P.,Mayatepek Ertan,Stenzel Werner,Diecke SebastianORCID,Kühn RalfORCID,Wanker Erich E.ORCID,Rajewsky NikolausORCID,Schuelke MarkusORCID,Prigione AlessandroORCID

Abstract

AbstractLeigh syndrome (LS) is a severe manifestation of mitochondrial disease in children and is currently incurable. The lack of effective models hampers our understanding of the mechanisms underlying the neuronal pathology of LS. Using patient-derived induced pluripotent stem cells and CRISPR/Cas9 engineering, we developed a human model of LS caused by mutations in the complex IV assembly gene SURF1. Single-cell RNA-sequencing and multi-omics analysis revealed compromised neuronal morphogenesis in mutant neural cultures and brain organoids. The defects emerged at the level of neural progenitor cells (NPCs), which retained a glycolytic proliferative state that failed to instruct neuronal morphogenesis. LS NPCs carrying mutations in the complex I gene NDUFS4 recapitulated morphogenesis defects. SURF1 gene augmentation and PGC1A induction via bezafibrate treatment supported the metabolic programming of LS NPCs, leading to restored neuronal morphogenesis. Our findings provide mechanistic insights and suggest potential interventional strategies for a rare mitochondrial disease.

Funder

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

United Mitochondrial Disease Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3