Fast custom wavelet analysis technique for single molecule detection and identification

Author:

Ganjalizadeh VahidORCID,Meena Gopikrishnan G.ORCID,Wall Thomas A.,Stott Matthew A.,Hawkins Aaron R.,Schmidt Holger

Abstract

AbstractMany sensors operate by detecting and identifying individual events in a time-dependent signal which is challenging if signals are weak and background noise is present. We introduce a powerful, fast, and robust signal analysis technique based on a massively parallel continuous wavelet transform (CWT) algorithm. The superiority of this approach is demonstrated with fluorescence signals from a chip-based, optofluidic single particle sensor. The technique is more accurate than simple peak-finding algorithms and several orders of magnitude faster than existing CWT methods, allowing for real-time data analysis during sensing for the first time. Performance is further increased by applying a custom wavelet to multi-peak signals as demonstrated using amplification-free detection of single bacterial DNAs. A 4x increase in detection rate, a 6x improved error rate, and the ability for extraction of experimental parameters are demonstrated. This cluster-based CWT analysis will enable high-performance, real-time sensing when signal-to-noise is hardware limited, for instance with low-cost sensors in point of care environments.

Funder

U.S. Department of Health & Human Services | National Institutes of Health

National Science Foundation

Cisco University Research Program Fund

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3