Abstract
AbstractAptamer switches that respond sensitively to pH could enhance control over molecular devices, improving their diagnostic and therapeutic efficacy. Previous designs have inserted pH-sensitive DNA motifs into aptamer sequences. Unfortunately, their performance was limited by the motifs’ intrinsic pH-responses and could not be tuned to operate across arbitrary pH ranges. Here, we present a methodology for converting virtually any aptamer into a molecular switch with pH-selective binding properties — in acidic, neutral, or alkaline conditions. Our design inserts two orthogonal motifs that can be manipulated in parallel to tune pH-sensitivity without altering the aptamer sequence itself. From a single ATP aptamer, we engineer pH-controlled target binding under diverse conditions, achieving pH-induced selectivity in affinity of up to 1,000-fold. Importantly, we demonstrate the design of tightly regulated aptamers with strong target affinity over only a narrow pH range. Our approach offers a highly generalizable strategy for integrating pH-responsiveness into molecular devices.
Funder
Chan-Zuckerberg Biohub Investigator program
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献