Effects of emissions caps on the costs and feasibility of low-carbon hydrogen in the European ammonia industry

Author:

Mingolla StefanoORCID,Gabrielli PaoloORCID,Manzotti AlessandroORCID,Robson Matthew J.ORCID,Rouwenhorst Kevin,Ciucci FrancescoORCID,Sansavini GiovanniORCID,Klemun Magdalena M.ORCID,Lu ZhongmingORCID

Abstract

AbstractThe European ammonia industry emits 36 million tons of carbon dioxide annually, primarily from steam methane reforming (SMR) hydrogen production. These emissions can be mitigated by producing hydrogen via water electrolysis using dedicated renewables with grid backup. This study investigates the impact of decarbonization targets for hydrogen synthesis on the economic viability and technical feasibility of retrofitting existing European ammonia plants for on-site, semi-islanded electrolytic hydrogen production. Results show that electrolytic hydrogen cuts emissions, on average, by 85% (36%-100% based on grid price and carbon intensity), even without enforcing emission limits. However, an optimal lifespan average well-to-gate emission cap of 1 kg carbon dioxide equivalent (CO2e)/kg H2 leads to a 95% reduction (92%-100%) while maintaining cost-competitiveness with SMR in renewable-rich regions (mean levelized cost of hydrogen (LCOH) of 4.1 euro/kg H2). Conversely, a 100% emissions reduction target dramatically increases costs (mean LCOH: 6.3 euro/kg H2) and land area for renewables installations, likely hindering the transition to electrolytic hydrogen in regions with poor renewables and limited land. Increasing plant flexibility effectively reduces costs, particularly in off-grid plants (mean reduction: 32%). This work guides policymakers in defining cost-effective decarbonization targets and identifying region-based strategies to support an electrolytic hydrogen-fed ammonia industry.

Funder

Hong Kong University of Science and Technology

Federal Department of the Environment, Transport, Energy, and Communications | Bundesamt für Energie

Hong Kong Research Grant Council

Publisher

Springer Science and Business Media LLC

Reference104 articles.

1. IRENA. Innovation Outlook—Renewable Ammonia. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/May/IRENA_Innovation_Outlook_Ammonia_2022.pdf (2022).

2. Soloveichik, G. Future of Ammonia Production: Improvement of Haber-Bosch of Electrochemical Synthesis? https://ammoniaenergy.org/presentations/future-of-ammonia-production-improvement-of-haber-bosch-process-or-electrochemical-synthesis/ (2017).

3. The Royal Society. Ammonia: Zero-Carbon Fertiliser, Fuel and Energy Store. https://royalsociety.org/-/media/policy/projects/green-ammonia/green-ammonia-policy-briefing.pdf (2020).

4. Ghavam, S., Vahdati, M., Wilson, I. A. G. & Styring, P. Sustainable ammonia production processes. Front. Energy Res. 9, 580808 (2021).

5. FCHO. Hydrogen Supply Capacity. https://observatory.clean-hydrogen.europa.eu/hydrogen-landscape/production-trade-and-cost/hydrogen-production (2022).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3