Abstract
AbstractCrowding is the inability to recognize an object in clutter, usually considered a fundamental low-level bottleneck to object recognition. Here we advance and test an alternative idea, that crowding, like predictive phenomena such as serial dependence, results from optimizing strategies that exploit redundancies in natural scenes. This notion leads to several testable predictions: crowding should be greatest for unreliable targets and reliable flankers; crowding-induced biases should be maximal when target and flankers have similar orientations, falling off for differences around 20°; flanker interference should be associated with higher precision in orientation judgements, leading to lower overall error rate; effects should be maximal when the orientation of the target is near that of the average of the flankers, rather than to that of individual flankers. Each of these predictions were supported, and could be simulated with ideal-observer models that maximize performance. The results suggest that while crowding can affect object recognition, it may be better understood not as a processing bottleneck, but as a consequence of efficient exploitation of the spatial redundancies of the natural world.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献