Abstract
AbstractDissipative Kerr soliton generation using self-injection-locked III-V lasers has enabled fully integrated hybrid microcombs that operate in turnkey mode and can access microwave repetition rates. Yet, continuous-wave-driven soliton microcombs exhibit low energy conversion efficiency and high optical power threshold, especially when the repetition frequencies are within the microwave range that is convenient for direct detection with off-the-shelf electronics. Here, by actively switching the bias current of injection-locked III-V semiconductor lasers with switching frequencies in the X-band and K-band microwave ranges, we pulse-pump both crystalline and integrated microresonators with picosecond laser pulses, generating soliton microcombs with stable repetition rates and lowering the required average pumping power by one order of magnitude to a record-setting level of a few milliwatts. In addition, we unveil the critical role of the phase profile of the pumping pulses, and implement phase engineering on the pulsed pumping scheme, which allows for the robust generation and the stable trapping of solitons on intracavity pulse pedestals. Our work leverages the advantages of the gain switching and the pulse pumping techniques, and establishes the merits of combining distinct compact comb platforms that enhance the potential of energy-efficient chipscale microcombs.
Funder
United States Department of Defense | Defense Advanced Research Projects Agency
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Science Foundation Ireland
EC | European Regional Development Fund
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献