Community assessment of methods to deconvolve cellular composition from bulk gene expression

Author:

White Brian S.ORCID,de Reyniès Aurélien,Newman Aaron M.ORCID,Waterfall Joshua J.ORCID,Lamb Andrew,Petitprez FlorentORCID,Lin YatingORCID,Yu RongshanORCID,Guerrero-Gimenez Martin E.,Domanskyi Sergii,Monaco GianniORCID,Chung VerenaORCID,Banerjee JinetaORCID,Derrick DanielORCID,Valdeolivas Alberto,Li Haojun,Xiao XuORCID,Wang ShunORCID,Zheng Frank,Yang WenxianORCID,Catania Carlos A.,Lang Benjamin J.ORCID,Bertus Thomas J.,Piermarocchi Carlo,Caruso Francesca P.ORCID,Ceccarelli MicheleORCID,Yu Thomas,Guo Xindi,Bletz Julie,Coller John,Maecker HoldenORCID,Duault CarolineORCID,Shokoohi Vida,Patel Shailja,Liliental Joanna E.,Simon Stockard, ,de Reyniès Aurélien,Saez-Rodriguez JulioORCID,Heiser Laura M.ORCID,Guinney Justin,Gentles Andrew J.ORCID

Abstract

AbstractWe evaluate deconvolution methods, which infer levels of immune infiltration from bulk expression of tumor samples, through a community-wide DREAM Challenge. We assess six published and 22 community-contributed methods using in vitro and in silico transcriptional profiles of admixed cancer and healthy immune cells. Several published methods predict most cell types well, though they either were not trained to evaluate all functional CD8+ T cell states or do so with low accuracy. Several community-contributed methods address this gap, including a deep learning-based approach, whose strong performance establishes the applicability of this paradigm to deconvolution. Despite being developed largely using immune cells from healthy tissues, deconvolution methods predict levels of tumor-derived immune cells well. Our admixed and purified transcriptional profiles will be a valuable resource for developing deconvolution methods, including in response to common challenges we observe across methods, such as sensitive identification of functional CD4+ T cell states.

Funder

U.S. Department of Health & Human Services | NIH | National Cancer Institute

U.S. Department of Health & Human Services | National Institutes of Health

A.d.R was supported by the Programme Cartes d’Identité des Tumeurs (CIT) from the Ligue Nationale Contre le Cancer

J.J.W. was supported by the SiRIC-Curie program

F.P. was supported by the Programme Cartes d’Identité des Tumeurs (CIT) from the Ligue Nationale Contre le Cancer

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3