Abstract
AbstractPhase-change materials (PCMs) offer a compelling platform for active metaoptics, owing to their large index contrast and fast yet stable phase transition attributes. Despite recent advances in phase-change metasurfaces, a fully integrable solution that combines pronounced tuning measures, i.e., efficiency, dynamic range, speed, and power consumption, is still elusive. Here, we demonstrate an in situ electrically driven tunable metasurface by harnessing the full potential of a PCM alloy, Ge2Sb2Te5 (GST), to realize non-volatile, reversible, multilevel, fast, and remarkable optical modulation in the near-infrared spectral range. Such a reprogrammable platform presents a record eleven-fold change in the reflectance (absolute reflectance contrast reaching 80%), unprecedented quasi-continuous spectral tuning over 250 nm, and switching speed that can potentially reach a few kHz. Our scalable heterostructure architecture capitalizes on the integration of a robust resistive microheater decoupled from an optically smart metasurface enabling good modal overlap with an ultrathin layer of the largest index contrast PCM to sustain high scattering efficiency even after several reversible phase transitions. We further experimentally demonstrate an electrically reconfigurable phase-change gradient metasurface capable of steering an incident light beam into different diffraction orders. This work represents a critical advance towards the development of fully integrable dynamic metasurfaces and their potential for beamforming applications.
Funder
National Science Foundation
Deutsche Forschungsgemeinschaft
United States Department of Defense | United States Navy | Office of Naval Research
United States Department of Defense | Defense Advanced Research Projects Agency
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
166 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献