Atmospheric emissions of hexachlorobutadiene in fine particulate matter from industrial sources

Author:

Zhao Chenyan,Yang LiliORCID,Sun Yuxiang,Chen Changzhi,Huang Zichun,Yang Qiuting,Yun Jianghui,Habib Ahsan,Liu GuoruiORCID,Zheng MinghuiORCID,Jiang Guibin

Abstract

AbstractHexachlorobutadiene (HCBD) is a concerning chemical that is included in the United States Toxic Substances Control Act, and the Stockholm Convention. Knowledge of the sources of HCBD is insufficient and is pivotal for accurate inventory and implementing global action. In this study, unintentional HCBD release and source emission factors of 121 full-scale industrial plants from 12 industries are investigated. Secondary copper smelting, electric arc furnace steelmaking, and hazardous waste incineration show potential for large emission reductions, which are found of high HCBD emission concentrations of > 20 ng/g in fine particulate matter in this study. The highest HCBD emission concentration is observed for the secondary copper smelting industry (average: 1380 ng/g). Source emission factors of HCBD for the 12 industries range from 0.008 kg/t for coal fire power plants to 0.680 kg/t for secondary lead smelting, from which an estimation of approximately 8452.8 g HCBD emissions annually worldwide achieved. The carcinogenic risks caused by HCBD emissions from countries and regions with intensive 12 industrial sources are 1.0-80 times higher than that without these industries. These results will be useful for formulating effective strategies of HCBD control.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3