Tailored compliant mechanisms for reconfigurable electromagnetic devices

Author:

Mackertich-Sengerdy GalestanORCID,Campbell Sawyer D.ORCID,Werner Douglas H.ORCID

Abstract

AbstractReconfigurable electromagnetic devices, specifically reconfigurable antennas, have shown to be integral to the future of communication systems. However, mechanically robust designs that can survive real-world, harsh environment applications and high-power conditions remain rare to this day. In this paper, the general framework for a field of both discrete and continuously mechanically reconfigurable devices is established by combining compliant mechanisms with electromagnetics. To exemplify this new concept, a reconfigurable compliant mechanism antenna is demonstrated which exhibits continuously tunable performance across a broad band of frequencies. Moreover, three additional examples are also introduced that further showcase the versatility and advanced capabilities of compliant mechanism enabled electromagnetic devices. Unlike previous approaches, this is achieved with minimal part counts, additive manufacturing techniques, and high reliability, which mechanical compliant mechanism devices are known for. The results presented exemplify how compliant mechanisms have the capacity to transform the broader field of reconfigurable electromagnetic devices.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Reference67 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Active compliant mechanisms for optimized actuation by LCE-based artificial muscles;Mechanics of Materials;2024-02

2. A COMPACT HONEYCOMB-STRUCTURED RECONFIGURABLE ANTENNA WITH COPLANAR WAVEGUIDE FEED FOR MULTIBAND WIRELESS APPLICATIONS;Telecommunications and Radio Engineering;2024

3. Additively Manufactured Compliant Mechanism Solutions for Enhanced Electromagnetic Device Performance;2023 International Conference on Electromagnetics in Advanced Applications (ICEAA);2023-10-09

4. Compliant Mechanisms and Mechanically Tuned Electromagnetic Metamaterials;2023 Seventeenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials);2023-09-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3