Abstract
AbstractThe interesting physical and chemical properties of carbon nanotubes (CNTs) have prompted the search for diverse inorganic nanotubes with different compositions to expand the number of available nanotechnology applications. Among these materials, crystalline inorganic nanotubes with well-defined structures and uniform sizes are suitable for understanding structure–activity relationships. However, their preparation comes with large synthetic challenges owing to their inherent complexity. Herein, we report the example of a crystalline nanotube array based on a supertetrahedral chalcogenide cluster, K3[K(Cu2Ge3Se9)(H2O)] (1). To the best of our knowledge, this nanotube array possesses the largest diameter of crystalline inorganic nanotubes reported to date and exhibits an excellent structure-dependent electric conductivity and an oriented photoconductive behavior. This work represents a significant breakthrough both in terms of the structure of cluster-based metal chalcogenides and in the conductivity of crystalline nanotube arrays (i.e., an enhancement of ~4 orders of magnitude).
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献