Abstract
AbstractDefects in metal-organic frameworks (MOFs) have great impact on their nano-scale structure and physiochemical properties. However, isolated defects are easily concealed when the frameworks are interrogated by typical characterization methods. In this work, we unveil the presence of solvent-derived formate defects in MOF-74, an important class of MOFs with open metal sites. With multi-dimensional solid-state nuclear magnetic resonance (NMR) investigations, we uncover the ligand substitution role of formate and its chemical origin from decomposed N,N-dimethylformamide (DMF) solvent. The placement and coordination structure of formate defects are determined by 13C NMR and density functional theory (DFT) calculations. The extra metal-oxygen bonds with formates partially eliminate open metal sites and lead to a quantitative decrease of N2 and CO2 adsorption with respect to the defect concentration. In-situ NMR analysis and molecular simulations of CO2 dynamics elaborate the adsorption mechanisms in defective MOF-74. Our study establishes comprehensive strategies to search, elucidate and manipulate defects in MOFs.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Zhejiang Province
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Reference82 articles.
1. Zhou, H. C., Long, J. R. & Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev. 112, 673–674 (2012).
2. Long, J. R. & Yaghi, O. M. The pervasive chemistry of metal-organic frameworks. Chem. Soc. Rev. 38, 1213–1214 (2009).
3. Dissegna, S., Epp, K., Heinz, W. R., Kieslich, G. & Fischer, R. A. Defective metal-organic frameworks. Adv. Mater. 1704501, 1–23 (2018).
4. Fu, Y. et al. Defect-assisted loading and docking conformations pharmaceuticals in metal-organic frameworks. Angew. Chem. Int. Ed. 133, 7798–7806 (2021).
5. Lee, T. H. et al. Defect engineering in metal–organic frameworks towards advanced mixed matrix membranes for efficient propylene/propane separation. Angew. Chem. Int. Ed. 60, 13081–13088 (2021).
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献