Abstract
AbstractThe fractional Schrödinger equation (FSE)—a natural extension of the standard Schrödinger equation—is the basis of fractional quantum mechanics. It can be obtained by replacing the kinetic-energy operator with a fractional derivative. Here, we report the experimental realisation of an optical FSE for femtosecond laser pulses in the temporal domain. Programmable holograms and the single-shot measurement technique are respectively used to emulate a Lévy waveguide and to reconstruct the amplitude and phase of the pulses. Varying the Lévy index of the FSE and the initial pulse, the temporal dynamics is observed in diverse forms, including solitary, splitting and merging pulses, double Airy modes, and “rain-like” multi-pulse patterns. Furthermore, the transmission of input pulses carrying a fractional phase exhibits a “fractional-phase protection” effect through a regular (non-fractional) material. The experimentally generated fractional time-domain pulses offer the potential for designing optical signal-processing schemes.
Funder
Canada Research Chairs
Canada First Research Excellence Fund
Israel Science Foundation
International Postdoctoral Exchange Fellowship Program of China Postdoctoral Council
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献