Abstract
AbstractWe show the generation of a tunable linearly chirped microwave waveform (LCMW) with an ultra-large time-bandwidth product (TBWP) based on a hybrid Fourier-domain mode-locked (FDML) laser. The key device in the hybrid FDML laser is a silicon photonic integrated micro-disk resonator (MDR) which functions as an optical bandpass filter, to have strong wavelength selectivity and fast frequency tunability. By incorporating the integrated MDR in the fiber-based ring cavity to perform frequency-domain mode locking, an FDML laser is realized and a broadband frequency-chirped optical pulse is generated. By beating the frequency-chirped optical pulse with an optical carrier from a laser diode (LD) at a photodetector (PD), an LCMW is generated. The bandwidth of the LCMW is over 50 GHz and the temporal duration is over 30 µs, with an ultra-large TBWP of 1.5 × 106. Thanks to the strong tunability of the MDR in the FDML laser, the generated LCMW is fully tunable in terms of bandwidth, temporal duration, chirp rate, and center frequency.
Funder
Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献