Abstract
AbstractElectrocatalytic urea synthesis emerged as the promising alternative of Haber–Bosch process and industrial urea synthetic protocol. Here, we report that a diatomic catalyst with bonded Fe–Ni pairs can significantly improve the efficiency of electrochemical urea synthesis. Compared with isolated diatomic and single-atom catalysts, the bonded Fe–Ni pairs act as the efficient sites for coordinated adsorption and activation of multiple reactants, enhancing the crucial C–N coupling thermodynamically and kinetically. The performance for urea synthesis up to an order of magnitude higher than those of single-atom and isolated diatomic electrocatalysts, a high urea yield rate of 20.2 mmol h−1 g−1 with corresponding Faradaic efficiency of 17.8% has been successfully achieved. A total Faradaic efficiency of about 100% for the formation of value-added urea, CO, and NH3 was realized. This work presents an insight into synergistic catalysis towards sustainable urea synthesis via identifying and tailoring the atomic site configurations.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
208 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献