Abstract
AbstractRickettsia species of the spotted fever group are arthropod-borne obligate intracellular bacteria that can cause mild to severe human disease. These bacteria invade host cells, replicate in the cell cytosol, and spread from cell to cell. To access the host cytosol and avoid immune detection, they escape membrane-bound vacuoles by expressing factors that disrupt host membranes. Here, we show that a patatin-like phospholipase A2 enzyme (Pat1) facilitates Rickettsia parkeri infection by promoting escape from host membranes and cell-cell spread. Pat1 is important for infection in a mouse model and, at the cellular level, is crucial for efficiently escaping from single and double membrane-bound vacuoles into the host cytosol, and for avoiding host galectins that mark damaged membranes. Pat1 is also important for avoiding host polyubiquitin, preventing recruitment of autophagy receptor p62, and promoting actin-based motility and cell-cell spread.
Funder
U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献