Abstract
AbstractAs traditional silicon technology is moving fast towards its fundamental limits, all-oxide electronics is emerging as a challenger offering principally different electronic behavior and switching mechanisms. This technology can be utilized to fabricate devices with enhanced and exotic functionality. One of the challenges for integration of complex oxides in electronics is the availability of appreciable low-temperature synthesis routes. Herein we provide a fundamental extension of the materials toolbox for oxide electronics by reporting a facile route for deposition of highly electrically conductive thin films of LaNiO3 by atomic layer deposition at low temperatures. The films grow epitaxial on SrTiO3 and LaAlO3 as deposited at 225 °C, with no annealing required to obtain the attractive electronic properties. The films exhibit resistivity below 100 µΩ cm with carrier densities as high as 3.6 · 1022 cm−3. This marks an important step in the realization of all-oxide electronics for emerging technological devices.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献