Abstract
AbstractQuantum simulation has the potential to be an indispensable technique for the investigation of non-perturbative phenomena in strongly-interacting quantum field theories (QFTs). In the modern quantum era, with Noisy Intermediate Scale Quantum (NISQ) simulators widely available and larger-scale quantum machines on the horizon, it is natural to ask: what non-perturbative QFT problems can be solved with the existing quantum hardware? We show that existing noisy quantum machines can be used to analyze the energy spectrum of several strongly-interacting 1+1D QFTs, which exhibit non-perturbative effects like ‘quark confinement’ and ‘false vacuum decay’. We perform quench experiments on IBM’s quantum simulators to compute the energy spectrum of 1+1D quantum Ising model with a longitudinal field. Our results demonstrate that digital quantum simulation in the NISQ era has the potential to be a viable alternative to numerical techniques such as density matrix renormalization group or the truncated conformal space methods for analyzing QFTs.
Funder
U.S. Department of Energy
Publisher
Springer Science and Business Media LLC