Tandem utilization of CO2 photoreduction products for the carbonylation of aryl iodides

Author:

Xia Yuan-Sheng,Tang Meizhong,Zhang LeiORCID,Liu JiangORCID,Jiang Cheng,Gao Guang-Kuo,Dong Long-Zhang,Xie Lan-GuiORCID,Lan Ya-QianORCID

Abstract

AbstractPhotocatalytic CO2 reduction reaction has been developed as an effective strategy to convert CO2 into reusable chemicals. However, the reduction products of this reaction are often of low utilization value. Herein, we effectively connect photocatalytic CO2 reduction and amino carbonylation reactions in series to reconvert inexpensive photoreduction product CO into value-added and easily isolated fine chemicals. In this tandem transformation system, we synthesize an efficient photocatalyst, NNU-55-Ni, which is transformed into nanosheets (NNU-55-Ni-NS) in situ to improve the photocatalytic CO2-to-CO activity significantly. After that, CO serving as reactant is further reconverted into organic molecules through the coupled carbonylation reactions. Especially in the carbonylation reaction of diethyltoluamide synthesis, CO conversion reaches up to 85%. Meanwhile, this tandem transformation also provides a simple and low-cost method for the 13C isotopically labeled organic molecules. This work represents an important and feasible pathway for the subsequent separation and application of CO2 photoreduction product.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3