Abstract
AbstractIons are ubiquitous biological regulators playing a key role for vital processes in animals and plants. The combined detection of ion concentration and real-time monitoring of small variations with respect to the resting conditions is a multiscale functionality providing important information on health states. This multiscale functionality is still an open challenge for current ion sensing approaches. Here we show multiscale real-time and high-sensitivity ion detection with complementary organic electrochemical transistors amplifiers. The ion-sensing amplifier integrates in the same device both selective ion-to-electron transduction and local signal amplification demonstrating a sensitivity larger than 2300 mV V−1 dec−1, which overcomes the fundamental limit. It provides both ion detection over a range of five orders of magnitude and real-time monitoring of variations two orders of magnitude lower than the detected concentration, viz. multiscale ion detection. The approach is generally applicable to several transistor technologies and opens opportunities for multifunctional enhanced bioelectronics.
Funder
EC | Horizon 2020 Framework Programme
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Reference62 articles.
1. Vander, A., Sherman, J. & Luciano, D. Human Physiology: The Mechanisms of Body Function. 8th edn (McGraw-Hill, New York, 2001).
2. Nieves-Cordones M., Al Shiblawi F.R., Sentenac H. (2016) Roles and Transport of Sodium and Potassium in Plants. In: Sigel A., Sigel H., Sigel R. (eds) The Alkali Metal Ions: Their Role for Life. Metal Ions in Life Sciences, vol 16. Springer, Cham.
3. Pardo, J. M. & Quintero, F. J. Plants and sodium ions: keeping company with the enemy. Genome Biol. 3, 1017.1–1017.4 (2002).
4. Maas, E. V., Plant growth response to salt stress. In: Lieth, H. & Al Masoom, A. A. (eds) Towards the rational use of high salinity tolerant plants. Tasks for vegetation science, vol 27. Springer, Dordrecht.
5. Jentsch, T. J., Hübner, C. A. & Fuhrmann, J. C. Ion channels: function unravelled by dysfunction. Nat. Cell Biol. 6, 1039–1047 (2004).
Cited by
113 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献