Abstract
AbstractStable vortex lattices are basic dynamical patterns which have been demonstrated in physical systems including superconductor physics, Bose-Einstein condensates, hydrodynamics and optics. Vortex-antivortex (VAV) ensembles can be produced, self-organizing into the respective polar lattices. However, these structures are in general highly unstable due to the strong VAV attraction. Here, we demonstrate that multiple optical VAV clusters nested in the propagating coherent field can crystallize into patterns which preserve their lattice structures over distance up to several Rayleigh lengths. To explain this phenomenon, we present a model for effective interactions between the vortices and antivortices at different lattice sites. The observed VAV crystallization is a consequence of the globally balanced VAV couplings. As the crystallization does not require the presence of nonlinearities and appears in free space, it may find applications to high-capacity optical communications and multiparticle manipulations. Our findings suggest possibilities for constructing VAV complexes through the orbit-orbit couplings, which differs from the extensively studied spin-orbit couplings.
Funder
National Science Foundation of China | National Natural Science Foundation of China-Yunnan Joint Fund
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献